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Abstract  

Curved beams have found many applications in various fields of engineering 
such as civil, mechanical and aerospace engineering. Therefore, many 
researchers have devoted themselves to developing finite element solutions for 
curved beams. The question of the choice of the proper finite element solution to 
perform static and dynamic analysis of the structures that involve curved beams 
was investigated. The investigation was carried out on a lighting column. Two 
finite element solutions named; straight beam finite element method (SE-
method) and curved beam finite element method (CE-method) were studied. The 
results for natural frequencies, mode shapes, and the deformed configurations 
obtained from the two approaches were compared. A MATLAB code was 
written to carry out the static and dynamic finite element analysis of the lighting 
column. 

Keywords:  Curved beams, finite element method, static and dynamic analysis, 
lighting column.  

1. Introduction  

The finite element analysis of curved beam has been a topic of intense interest 
for researchers over years. The motivation for this activity is largely because; i) 
curved beams have many applications in engineering such as civil, mechanical 
and aerospace engineering. ii) Curved beams are more efficient than straight 
beams in transferring loads because the transfer is influenced by shear, bending 
and membrane action [1 ,2]. iii) Shear and membrane locking problems are one 
of the most serious difficulties that challenge researchers to obtain the exact 
stiffness and mass matrices for curved beam elements. This is because locking 
phenomena leads to underestimation of the bending deformations and 
overestimations of natural frequency for curved beams [3].  

For most structural engineers, choosing the suitable finite element method for 
analysing curved structures, such as rings, arches and bridges, is still very 
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difficult and tricky [4 ,5]. Generally, two methods namely SE-method and CE-
method can be employed for analysing curved beams/arches, with SE-method 
referring to straight finite beam elements and CE to curved finite beam elements. 
The SE-method is based on the conventional straight beam elements, where a 
curved beam is idealized as a sequence of a series of small straight beam 
segments in order to approximate the true curved shape. The other approach is to 
utilise the curved beam finite element solution to analyse curved structures.  

The main purpose of this study is to compare the SE-method with the CE-
method to analyse a structure that has a curved beam. The static and dynamic 
comparison was carried out on a street lighting column structure. This 
comparison was included natural frequencies, mode shapes and deformed 
configurations.  

2. Description of lighting columns 

The lighting column, shown in Figure 1, was chosen in this study. It consists of 
three parts, two straight parts and a curved part which is a quarter of circle. The 
mounting height of the pole is 13.2 m, see Figure 1 for additional dimensions. 
The cross section of the lighting column is a hollow circular section. A lamp, 
which is not shown in the Figure 1, is attached to the tip of the lighting column. 
The lamp has a mass of 40 kg. The required material properties for the lighting 
column are assumed to be; Modulus of elasticity E=200 GPa and mass density 
ρ= 7850 kg/m3. 

 
Figure 1: Detailed dimension of the lighting column. 
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3. Finite element modelling of the lighting columns 

In this paper, two finite element solutions were conducted on the lighting column 
shown in Figure 1. The first is the SE method that based on the conventional 
straight-beam elements, in which the three parts of the lighting column were 
modelled by straight beam elements. In the conventional straight beam elements, 
a curved beam is divided into a series of straight beam segments to approximate 
the true curved shape. The other FE solution is the CE method which is based on 
curved beam elements where the curved part of the lighting column was 
modelled by curved beam elements and the other parts by straight beam 
elements. A comparison between the two finite element solutions was made in 
terms of displacements, natural frequencies and mode shapes.  A MATLAB code 
was written for the purpose of this research. 

It is well know that the accuracy of the static and dynamic analyses by using 
FEM is dependent on stiffness and mass matrices. Thus, stiffness and mass 
matrices for both straight beam finite element and curved beam finite element are 
presented below.  

3.1. Finite element formulation of straight beam element  

Figure 2 shows a two dimensional straight beam element with uniform cross 
section and it has six degrees of freedom, three at each node. The beam is 
capable of resisting axial forces (FX1, FX2), shearing forces (FY1, FY2) and 
bending moments (M1, M2). The nodes are labelled using numbers inside circles. 
The undeformed beam is shown with a solid line, while the deformed beam is 
shown with a dash line. The capital letters are used to correspond to the local 
coordinate, while small letters are used to represent the global coordinates [6].  

 

Figure 2: Straight beam element. 
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Where (L) is length of the beam, (I) is moment of inertia of the cross-sectional 
area, (E) is Elastic Modulus and (𝑢X and 𝑢Y ) are corresponding displacements. 

The stiffness matrix in local coordinate system [KL] for the plane straight beam 
element shown in Figure 2 is given by equation (1); 

  KL=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0 0 – 0 0

0 0

0 0

− 0 0 0 0

0 0

0 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                        (1) 

To transform the local stiffness matrix from local coordinates to global 
coordinates, the following relationship is used: 

[KG]= [T] T [KL] [T]                                                                               (2) 

Where [KG] is the global stiffness matrix and [T] is the transformation matrix,         
which can be written as: 

[T]=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑐 𝑠 0 0 0 0

−𝑠 𝑐 0 0 0 0

0 0 1 0 0 0

0 0 0 𝑐 𝑠 0

0 0 0 −𝑠 𝑐 0

0 0 0 0 0 1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                                                        (3) 

Where 𝑐 = cos Ѳ  𝑎𝑛𝑑 𝑠 = sin Ѳ 

The elemental mass matrix in local coordinate system [ML] for the finite  
straight plane beam element shown in Figure 2 can be computed as follows;  
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   ML =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
140 0 0 70 0 0

0 156 −22L 0 54 13L

0 −22L 4L 0 −13L −3L

70 0 0 140 0 0

0 54 −13L 0 156 22L

0 13L −3L 0 22L 4L ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

           (4) 

Where ρ is the mass density of the material and A is the cross-sectional area. 
Similarly, the global mass matrix [MG] can be obtained from the following 
equation: 

[MG]= [T] T [ML] [T]                                                                             (5) 

3.2. Finite element formulation of curved beam element  

Many formulations have been derived for a curved element [1,2,3,4,5 and 7]. 
These formulations are very complex which discourage designers from 
employing them. Stiffness and mass matrices derived by [4] for a curved beam 
finite element are used in the present study, since they presented the most 
explicit forms of the curved element property matrices. 

 

Figure 3: Curved beam element [4]. 

Figure 3 shows a three dimensional curved beam element, where 𝑢x is the radial 
displacement, 𝑢ѳ is the circumferential displacement and φy is the rational angle. 
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The stiffness matrix of the curved element, shown in Figure 3, in local 
coordinate system [KL] obtained from the following relation: 

 [KL]= [D] [B]-1                                                                                       (6) 

Where: 

𝐃 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0 0 0 −  sinθ 0 − cos θ

0 0 0  cos θ 0 −  sinθ

−1 0 0 −2 cos θ 0 −2 sin θ

0 0 0  sinθ 0  cos θ

0 0 0 −  cos θ 0  sinθ

1 0 0 2 cos θ 0 −2 sin θ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

             (7) 

  𝐶 = 1 +                                                                                                 (8) 

  𝐼 = ∫ 𝑥 /(1 −
∙

)  𝑑𝐴                                                                                  (9) 

Where R is the average radius of the arch curvature and Iy is the moment of 
interia of the area A about the y-axis. 

B =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 cos θ sinθ θ  sinθ 0 θ cos θ

0  sinθ −cos θ sinθ −  θ cos θ 1 cos θ +  θ sin θ

θ 0 0  sinθ  cos θ

1 cos θ sinθ θ  sinθ 0 θ cos θ

0 sinθ −cos θ sinθ −  θ cos θ 1 cos θ +  θ sin θ

θ 0 0 θ  sinθ  cos θ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (10) 
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In order to transform the stiffness and mass matrices of each curved beam 
element from the local coordinate system to the global coordinate before they are 
assembled, the following equation is used:  

 

 [KG]= [T] T [KL] [T]                                                                              (11) 

T =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑐1 𝑠1 0 0 0 0

−𝑠1 𝑐1 0 0 0 0

0 0 1 0 0 0

0 0 0 𝑐2 𝑠2 0

0 0 0 −𝑠2 𝑐2 0

0 0 0 0 0 1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                                              (12) 

Where is C1=cosѲ1, S1= cosѲ1, C2= cosѲ2 and S2= cosѲ2. 

The elemental mass matrix in local coordinate system [ML] for the curved beam 
element shown in Figure 3 is giveb by; 

 [ML]= ρR [B-1]T [𝐻] [B] -1                                                                                (13) 

It should be noted that, [𝐻] is a 6*6 a symmetrical square matrix, and in order to 
obtain the global mass matrix equation 5 should be used.  Also, the nodal 
displacements are ordered as shear, axial and moment respectively. 

 𝐻 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐻 𝐻 𝐻 𝐻 𝐻 𝐻

𝐻 𝐻 𝐻 𝐻 𝐻 𝐻

𝐻 𝐻 𝐻 𝐻 𝐻 𝐻

𝐻 𝐻 𝐻 𝐻 𝐻 𝐻

𝐻 𝐻 𝐻 𝐻 𝐻 𝐻

𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                                   (14) 

The coefficients of matix [𝑯] is given in Appendix A. 
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4. Numerical results and discussions  

4.1. Static analysis of the lighting column  

Figures 4 depict the deformed shape of the lighting column that was obtained 
from the SE and CE finite element methods. The undeformed shape of the 
lighting column is shown with a solid line, while the deformed shape is shown 
with a dash line. It is worthwhile to mention that in the SE-method a large 
number of straight beam elements were used to model the curved part of the 
lighting column in order to converge towards the CE-method solution. 

 
Figure 4: Deformed shape of modelling the lighting column by SE-method (left) and 

CE-method (right). 

4.2. Dynamic analysis of the lighting column  

Table (1) shows the lowest six natural frequencies of the lighting column that 
obtained from SE and CE finite element methods. From table (1) it is evident 
that, all the natural frequencies obtained from the SE-method are similar to those 
of the CE-method for the lighting column. 
 

Table 1: The lowest six natural frequencies of the lighting column. 

Mode shape number Natural frequencies (ω rad/sec) 
SE-method CE-method 

1 1.07 1.07 
2 6.50 6.51 

3 16.47 16.47 
4 26.93 26.94 
5 43.54 43.54 
6 67.98 67.98 
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Figures 5 (a), (b), (c) and (d) shows the lowest four mode shapes of the lighting 
column from the SE and CE finite element methods respectively. It is seen that, 
the mode shapes obtained from the both methods are exactly the same. 

 

Figure (5): Comparison of the first and the second mode shapes of the lighting column 
from the SE and CE finite element methods.  

5. Conclusion 

The results for natural frequencies, mode shapes, and the deformed 
configurations of a lighting column which were obtained from the SE and CE 
methods were compared. Conclusions drawn from this comparison are as 
follows: 

 Using either the SE Finite element method or the CE finite element 
method, the natural frequencies and the associated mode shapes of the 
lighting column obtained from both methods are almost the same. Thus, 
for simplicity, one may use the simple mass matrix of straight beam 
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element (SE-method) instead of the curved beam element mass matrix 
(CE-method) to perform the dynamic analysis of the lighting column. 

 The accuracy of displacements of the lighting column obtained by using 
the SE-method may be as accurate as that obtained by using the CE-
method, if the number of straight beam elements is large enough. 

 Increase in the total number of elements in CE finite element method 
hardly affects the results. However, large number of elements should be 
used in the SE finite element method to converge towards the CE-method 
result. 

I recommend for future work to investigating the effect of the radius of curvature 
on displacements obtained by SE and CE approaches.  
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Appendix A: coefficients of matrix [𝐻] 

𝐻 = [𝐴 𝜃 + 𝑐   (  𝐴 +    )  (  
θ    

  
  )  ]

 
   

𝐻   
 = 𝐴[(1 + 𝐶 ) 𝑠𝑖𝑛 𝜃 − 𝐶𝜃 𝑐𝑜𝑠 θ ] θ 

θ 
     

𝐻   
 = 𝐴[𝜃 ]    
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𝐻 = 𝐴[−(1 + 𝐶) 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 ]    

𝐻 = 0  

𝐻 = 𝐴[𝜃 ]    

𝐻 = [(𝐴 + 3𝐴𝐶 +
2𝑐𝐼

 

𝑅
 ) ( 𝑠𝑖𝑛 𝜃 − 𝜃𝑐𝑜𝑠 𝜃) –  𝐴𝐶𝜃  𝑠𝑖𝑛 𝜃  ]  

 

𝐻 =
𝐴

2
[𝜃  −  𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 ]   

𝐻 =
𝐴

2
 [𝜃  −  𝑠𝑖𝑛  𝜃]   

𝐻 =  
𝐴𝜃

3
  

 
+  (𝐴  +  

2𝐼
 

𝑅
 ) ( 𝜃 − 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃) –  𝐴𝜃   𝑠𝑖𝑛  𝜃  ]  

 

𝐻 = (  
𝐶

2
  ) +  (𝐴 +  

𝐼

𝑅
  )𝜃     ]     

   

𝐻 = 𝐴 [−𝑐𝑜𝑠 𝜃  ]     
   

𝐻 = 𝐴 [−𝑠𝑖𝑛𝜃  ]     
   

𝐻 = [− (2𝐴 + 
2I 

𝑅  
 ) 𝑐𝑜𝑠 𝜃 –  𝐴𝜃 𝑠𝑖𝑛𝜃  

  ]     
  

 

𝐻 = [( 𝐴 +  
𝐼

𝑅
 ) 𝜃 ]    

𝐻 = [ (𝐴 +  3𝐴𝐶 +  
2𝐶𝐼 

𝑅
 )(𝑐𝑜𝑠 𝜃 +  𝑠𝑖𝑛𝜃) − 𝐴 𝐶𝜃  𝑐𝑜𝑠 𝜃 ]   

 

𝐻 =
𝐴

2
  [𝜃 +  𝑠𝑖𝑛  𝜃 ]   

𝐻 =
𝐴

2
 [ − 𝜃 − 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃]   

𝐻 =
1

2
 [− 𝐴(𝜃𝑠𝑖𝑛 2𝜃 +

𝑐𝑜𝑠2𝜃

2
  )   + (𝐴  +

4𝐼  

 𝑅   
 ) 𝑠𝑖𝑛  𝜃]   

𝐻 = [( 2𝐴 +  
2 𝐼

𝑅
 )𝑠𝑖𝑛 𝜃 − 𝐴𝜃 𝑐𝑜𝑠 𝜃 ]  

 

𝐻 = [
𝐴𝜃

3
+  𝐴 𝑠𝑖𝑛 𝜃(𝑐𝑜𝑠 𝜃 + 𝜃 𝑠𝑖𝑛 𝜃) + (

2𝐼

𝑅
 ) (𝜃 +  𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃)]  

 

 

 


